QC130之前在动力试验平台上面做的测试……结果怎么样?”
在林青某一句话说完的当口,常浩南突然询问道。
去年航空动力集团成立的时候,他曾经画过三张大饼。
其中一个就是在涡扇10核心机基础上搞一型30MW级别的船用燃机,准备应用于未来的国产驱逐舰上。
这个级别的燃气轮机,两台即可带动一艘8000吨级别的驱逐舰,而如果上四台,那么1.2万吨乃至更高也不在话下。
而要想把航改燃搞好,那肯定要多参考一些用户给出的反馈。
“燃机本身倒是没什么问题。”
林青回答道:
“体积、重量、输出功率、平均故障间隔还有油耗这些都在最开始的设计指标范围之内,只有噪音和振动水平,为了和油耗妥协所以稍微大了一些,不过再怎么大,比起柴油机来还是强出好几个档次了……”
“目前的主要问题跟那两艘052其实是一样的,咱们的海军过去几乎没装备过全燃动力军舰,所以无论是舰员还是船厂,对于燃机的保养、检修、维护都还不是很适应。”
“尤其是每次航行结束之后,或者出现故障的时候,因为燃气轮机相比柴油机更复杂,所以检查和维修消耗的时间大概要多出大概两到三倍,不过这些都可以通过训练逐渐克服……”
其实总结起来就是,虽然不太爱坏,但如果坏了就比较麻烦。
听到这里,常浩南突然灵光一闪,看向一直跟在身后的雷志兴和刘方平:
“咱们之前给LNG船开发的那套设备状态监测和故障自动诊断(ECM&FD)系统,应该可以移植到这艘护卫舰上来?”
之前常浩南在开发出可用的流形学习算法之后,第一个想到的应用场景就是风险和故障诊断。
只不过这需要大量传感器提供数据,以2000年的技术水平而言,飞机,至少中小型飞机很难满足这种要求。
所以就首先把这套系统用在了LNG船上——
蒸发气完全再液化系统会影响到整船的结构设计,即便对于存在安全冗余的Gas-Transport液货舱来说,仍然要面临一定风险。
而如果把包括液货舱、动力系统和船体结构在内的整船核心数据都接入到新系统里面,就可以提前对这种风险进行预估。
比如船上的某个阀门因为年久失修或者安装不到位等原因出现了失效风险,就会对上下游
本章未完,请点击下一页继续阅读!